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Abstract-A helicoid is a non-developable surface swept out by a line (the generator) which rotates with constant 
sense about another, non-parallel line (the heliaxis) whilst moving parallel to that line in a constant direction. 
Torsion may produce helicoids, though this is not a necessity. Previous references to helicoids and helices in 
structural geology are reviewed, and the basic properties of helicoids are compared with those of cylindrical and 
conical surfaces. A map and stereogram technique is developed for the recognition of nested (initially parallel, 
equally rotated, coaxial) macroscopic helicoids. The typically sigmoidal outcropping traces of nested helicoids 
show dip-direction reversals along trend. On stereograms, linear loci, each representing the poles from a single 
helicoid trace, diverge from a common pole. 

A nested set of macroscopic helocoidal cleavage surfaces from the Hill End Trough, southeastern Australia, 
are modelled and interpreted to have formed in two stages of torsion associated with accommodation of an 
adjacent granitoid intrusion. The volume affected by torsion is bound by curviplanar scissor faults. 

Helicoids may be found associated with: rotational porphyroblasts, deformed cylindrical bodies or strip-like 
surfaces (e.g. intrafolial fold axial planes), cylindrical diapirs with helical flow patterns, cylindrical scissor-faults, 
ductile shear zones, zones of constrictional strain, and en echelon segmented dykes and fracture planes. 

INTRODUCTION 

Geometrical analysis of complexly deformed surfaces in 
structural geology has relied upon their reduction to 
approximate cylindrical segments (Weiss & McIntyre 
1957, Turner & Weiss 1963), and occasionally conical 
segments (Stauffer 1964, Wilson 1967). Other ideal 
geometries have rarely been considered, an exception 
being the analysis of obliquely-folded surfaces by Ram- 
say (1967, Ch. 9). A helicoid is a surface produced when 
a line (the generator) is rotated, with constant sense, 
about another, non-parallel line (the heliaxis) whilst 
moving parallel to that line in one particular direction. 
Even in its most regular forms a helicoid is a non- 
cylindrical and non-conical surface. There have only 
been a few recent references in the geological literature 
to helicoids, probably due to the lack of definitions or 
methods of recognition of these surfaces. 

This contribution aims first to clarify terms related to 
helicoidal surfaces, and also briefly considers terms 
associated with helical lineations. References to such 

geometries in the literature are then reviewed. The basic 
geometrical properties of helicoids are examined and 
compared with cylindrical and conical surfaces, with the 
intention of establishing criteria for the identification of 
helicoids from data on structural maps and stereograms. 
An example of a helicoidal cleavage trend surface from 
the southeastern Lachlan Fold Belt, Australia, is pre- 

sented, and its probable origin discussed. Finally, the 
relationship between helicoidal geometries and tor- 
sional or other strains, and the nature of boundaries to 
domains containing helicoids (torsional and non- 
torsional) are discussed. 

Terms associated with helicoids and helices 

It is essential first to clarify the terms used in this paper 
for helicoids and helices (Table l), since some of these 
terms have varied connotations between the science 
disciplines (i.e. mathematics, astronomy, geology and 
biology). Borowski and Borwein (1989) used the term 
‘helicoid’ to refer to surfaces or solids with ‘screw-thread 

Table 1. Terms associated with helicoids and helices 

Helix 

Scrolled 

Helicoid 

Spiral 

A curved line produced when a point orbits a line (the heliaxis) while being translated parallel to that line in one particular 
direction. The helix is right-handed (Fig. la) if the point orbits the heliaxis clockwise. looking along the heliaxis. If the rotation is 
anticlockwise, a left-handed helix is produced (Fig. lb). 
Surfaces of cylindrical or conical geometry with a plane spiral section normal to their rotation axis. The scrolled surfaces shown in 
Fig. l(c) are left-handed looking downwards onto these surfaces. 
A non-developable surface produced when a line (the generator) is rotated about another, non-parallel line (the heliaxis) whilst 
moving parallel to that line in one particular direction. The helicoid is right-handed if the generator rotates clockwise around the 
heliaxis, looking along the heliaxis (Fig. Id). If the rotation is anticlockwise, a left-handed helicoid is produced. 
If unqualified, this term is synonymous with ‘helix’. Aplane spiralorplanospiral is a plane curve generated by a point which orbits 
another point in that plane, while consistently approaching or receding from it. The planospirals shown in Fig. l(e) are left-handed, 
looking onto the plane. 
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appearance’. This is too informal for practical use. 
James and James (1992) more precisely define a helicoid 
as a surface ‘generated by a plane curve or twisted curve 
which is rotated about a fixed line as axis, and is also 
translated in the direction of the axis in such a way that 
the ratio of the two rates is constant’. This definition has 
been modified for the purposes of this paper (Table 1) by 
specifying a constant direction of translation and con- 
stant sense of rotation, and non-parallelism of generator 
and axis, but removing the requirement for a constant 
ratio of rates of translation and rotation. Also, the 
generator of the helicoid surface is simply referred to as 
a ‘line’, which places no limitations on the shape of that 
line. Similarly the axis of rotation (here referred to as the 
heliaxis) may also be rectilinear or curvilinear (plane or 
non-plane). 

The terms ‘helicoidal’ and ‘helical’ are regarded in 
biological literature as being synonymous, and have also 
been used in this sense by Ramsay (1967, p. 493) and 
Hippertt (1994). To avoid confusion, it is recommended 
that ‘helical’ be used in preference to ‘helicoidal’ when 
referring to a helix. The term ‘spiral’ has been used to 
describe: (i) plane curves formed by a point orbitting 
another point whilst (consistently) approaching or 
receding from the latter (e.g. spiral inclusion patterns in 
syn-kinematic rotational porphyroblasts), and (ii) 
helices. It is recommended that when sense (i) is 
intended the term ‘plane spiral’ or ‘planospiral’ be used 
(Table 1). While the term ‘twisted’ seems convenient to 
use in connection with torsion, the term has been 
avoided in this paper since it has a separate definition in 
mathematics where it refers to non-plane lines (see 
definition of ‘helicoid’ by James & James (1992) above). 

Some surfaces have plane spiral sections but have 
cylindrical or conical geometry in three-dimensions 
(Fig. lc). A separate term ‘scrolled’ (Table 1) is used to 
describe such surfaces. It is recommended that im- 
precise terms like ‘coiled’ or ‘convolute’ should not be 
used, at least in reference to statistical geometrical 

analyses. 
A helix may be described as right- or left-handed. It is 

right-handed if the point tracing out the helix appears to 
have moved clockwise as it moves away from an ob- 
server looking along the heliaxis (Fig. la). It is left- 
handed if this sense of rotation is anticlockwise (Fig. lb). 
In a similar manner, a helicoid (Fig. Id) is right-handed 
if the surface appears to be generated by a line which 
rotates clockwise as the line moves away from an ob- 
server looking along the heliaxis. As shown in Figs. l(a, 
b & d), the right- or left-handedness is independent of 
the direction of observation along the heliaxis. Planos- 
pirals and scrolled surfaces are also right- or left-handed; 
however, a direction of observation must be nominated. 
Both examples of scrolled surfaces in Fig. l(c), and the 
planospirals in Fig. l(e) are left-handed as a result of the 
anticlockwise sense of propagation of the surfaces (or 
lines) away from their orbiting axes (or point), with the 
observations being made from the top of the figure 
downwards for Fig. l(c), and looking onto the plane in 
Fig. l(e). 

a 

b 

RIGHT-HAND HELIX 

LEFT-HAND HELIX 

RIGHT- 
HAND 

HELICOID 

e 

Fig. 1. (a) A right-hand helix is produced by a point which orbits an 
axis clockwise as it moves parallel to the axis away from the observer. 
(b) A left-hand helix is produced by a point which orbits an axis anti- 
clockwise as it moves parallel to the axis away from the observer. (c) 
Scrolled surfaces with conical and cylindrical geometry. Both are left- 
handed looking downwards at these surfaces. (d) A right-hand heli- 
coid is produced by a line which rotates about an axis clockwise as it is 
translated parallel to the axis, away from the observer. (e) A plane 
spiral (planospiral) is a plane curve generated by a point which orbits 
another point in the plane, while consistently approaching or receding 
from it. Looking onto the sketched plane, a coplanar pair of left-hand 

planospirals may be seen. (Further definitions in Table 1.) 

References to helicoids and helices in the geological 
literature 

There have been a few references in the geological 
literature to terms associated with helical and helicoid 
geometry. These references include the following. 

1. The complex internal foliations defined by inclusions 
within syn-tectonic rotated porphyroblasts are com- 
monly referred to as spiral inclusion trails (Powell & 
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Fig. 2. Examples of geological scrolls, helices and helicoids. (a) Slices 
through a rotational porphyroblast, showing the internal foliation. 
The shaded portions of the surface form two helicoids (one right-hand 
(R), the other left-hand (L)). (b) Apparently scrolled foliations within 
a ballooning pluton intruded into an active shear zone (after Brun & 
Pons 1981). (c) Helical magmaticflow in a diapir (after Hippertt 1994). 
(d) Right-hand helicoid-shaped dyke segments in the transition from 
single planar dyke to en echelon dyke system (after Fink 1985). In (a), 

(c) and (d) H represents the heliaxis. 

Treagus 1967,1970, Rosenfeld 1970, Schoneveld 1977). 
These porphyroblasts show plane spiral sections normal 
to the rotation axis. The internal foliation surface is a 
scrolled helicoid, that is scrolled in slices through the 
centre, normal to the rotation axis and helicoidal in a 
core, coaxial with the rotation axis (Fig. 2a). Powell and 
Treagus (1967,197O) and more recently Johnson (1993) 
illustrated the helicoid surface geometry along the ro- 
tation axis via serial sections through garnet porphyro- 
blasts. 
2. Watkinson (1981, fig. 5) illustrated an apparently 
‘twisted’ mesoscopic fold axial plane. He noted that 
isolated fold shapes such as intrafolial folds may sustain 
a twisting (torsional) mode of buckling. 
3. Helical flow in diapirs (Fig. 2c), with the consequent 
development of helical flow fabrics, has been described 
by Hippertt (1994). Hippert (1994) described left- 
handed helical lineations related to rotation during dia- 
piric rise. These lineations lay on conically-nested folia- 
tions outlining flow cells. He also suggested that those 
internal structures shown by Bouchez et al. (1990) might 

also be helical, and that the helical pattern may relate to 
slow diapiric ascent. Brun and Pons (1981) examined the 
Salvatierra pluton, which they described as having been 
emplaced as an expanding diapir in an active transcur- 
rent shear zone. The pattern of foliations within the 
Salvatierra pluton were described as ‘helicoidal’ due to 
interference between ballooning and transcurrent shear. 
The foliation trend surfaces describe plane spirals on 
their map, but the steep dip of the foliations suggests 
either a cylindrical or conical scrolled geometry (e.g. 
Fig. 2b). 
4. En echelon dykes, which form by break-up during 
ascent of a single steeply-dipping dyke into segments, 
each of which rotates through roughly the same angle 
and in the same sense (Anderson 1951, Delaney & 
Pollard 1981, Fink 1985), are helicoidal in shape (Fig. 
2d). Mandl (1987, p.109) illustrated segmentation of 
propagating fracture planes in three-dimensional stress 
fields into a series of helicoidal finlike surface com- 
ponents, which formed in stress fields where the orien- 
tation of the principal stress, a,, rotated progressively 
with depth. 
5. Global scale spiral lineaments have been noted by 
O’Driscoll (1980), who discovered a fundamental left- 
handed double helix lineament pattern emanating from 
the Earth’s poles and wrapping obliquely around the 
Earth. A counterspiral trend (right-handed) was also 
identified. These were perceived to have exerted a 
control on continental outlines and locations of major 
tectonic elements (island arcs, fold belt systems). 

BASIC GEOMETRICAL PROPERTIES OF 

HELICOIDS 

Whereas complete mesoscopic examples of helicoids 
may be relatively simple to recognise (e.g. Watkinson 
1981, fig. 5), identification of a macroscopic helicoid 
(e.g. by sampling poles on isolated parts of the surface) 
requires statistical analysis. To this end it is necessary to 
investigate the basic geometrical properties of helicoids. 
Of the infinite variety of helicoids, only the most regular 
helicoids will be treated here, namely those with rectilin- 
ear generators and heliaxis, and constant rate of trans- 
lation relative to rotation. Non-regular helicoids are 
discussed briefly later. 

Cylindrical, conical and simple helicoid surface seg- 
ments are compared in Fig. 3. The cylindrical surface 
can be pictured as being generated by a line (a fold axis) 
which is parallel to the rotation axis (Fig. 3a). The cone 
is generated by a line inclined to and rotating about the 
cone axis (Fig. 3~). For cylindrical and conical surfaces, 
the poles to the surface have constant orientation along 
any of the lines which trace out their surface. Therefore, 
on a stereogram these surfaces are represented by one 
point per generating line, allowing the surfaces to be 
represented by a single curvilinear locus of points-a 
great or small circle curve, respectively (Figs. 3b&d). In 
addition, the generators of conical and cylindrical sur- 
faces intersect each other if extended far enough in 
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Fig. 3. Comparison of the geometry of cylindrical, conical and heli- 
coid surfaces. (a) Cylindrical surface with cylinder axis F. Along each 
line tracing out the cylinder surface, poles (e.g. P, P’) have constant 
orientation. (b) Stereographic representation of geometry in (a). P & 
P’ lie on a great circle, with Fas its pole. (c) Conical surface with cone 
axis C. Along each line tracing out the cone surface (e.g. M & L), poles 
(P & P’, respectively) have constant orientation. (d) Stereographic 
representation of geometry in (c). P & P’ lie on a small circle, with Cas 
cone axis. L & M lie on another small circle coaxial with C. C, M & P 
lie on a great circle, as do C, L & P’. (e) Right-hand helicoid surface 
with heliaxis H. Poles along each line (e.g. L), tracing out the surface 
vary so that they are normal to H (pole P) at the heliaxis, but rotate 
towards parallelism with H as radial distance from H increases. 
Therefore for each line like L, there is a population of poles, and the 
helicoid is represented by an area of poles on the stereogram. (f) 
Stereographic representation of helicoid surface in (e). Poles scatter 
away from the great circle (through P & L), which has Has its pole. 
The area of poles on the stereogram is bound by two small circles, 
coaxial with H. The small circle cone angles are determined by the 
radial distance from Hover which poles to the surface are collected (in 
this case at distances such that the poles at the margins of the helicoid 

subtend angles 6 and E, respectively, with P, as shown). 

space. Surfaces with generators showing these proper- 
ties are referred to as developable surfaces (Lisle 1992). 
For the helicoid (Fig. 3e), the poles along each generator 
change their orientation as follows. At infinite radial 
distance these poles are parallel to the heliaxis. Moving 
radially towards the heliaxis these poles rotate so that 
the pole at the heliaxis is normal to this axis (Fig. 3e). 
Each generator line has a population of poles, and 
therefore poles to a helicoid segment are dispersed over 
an area of the stereogram. The regular helicoids de- 
scribed here are ruled surfaces; however, they are non- 
developable since the generators do not intersect with 
each other. 

If the generator of the helicoid touches the heliaxis, 
the poles collected along the heliaxis plot on a stereo- 
gram on the great circle normal to it. Poles collected at 
radially-greater distances from the heliaxis scatter 

further away from this great circle (Fig. 3f). Where the 
helicoid generator is skew to the heliaxis, the poles 
scatter away from a small circle, with cone axis parallel 
to the heliaxis. In the latter case, poles on the generators 
at their points of closest approach to the heliaxis lie 
along this small circle. These points of closest approach 
themselves trace out a helix. On the stereogram, the 
angular radius of the small circle of poles depends on the 
ratio of the rate of translation to the rate of rotation of 
the helicoid generator, and the diameter of the helix of 
closest points. 

The obliquely-folded surfaces described by Ramsay 
(1967, Ch. 9) superficially resemble helicoids, but are 
more closely related to cylinders and cones. After 
oblique folding, any set of initially parallel surfaces is 
represented on a stereogram by a single curvilinear line 
of points varying (depending on the original orientation 
of the oblique plane with respect to the fold axis) 
between a great and a small circle. 

Ideally, the above properties could be used to dis- 
tinguish helicoid segments from cylindrical or conical 
segments, and the heliaxis could be located. In practice 
the above properties are unlikely to be sufficient to 
identify macroscopic helicoids for the following reasons. 
When initially planar parallel surfaces (e.g. beds) are 
cylindrically- or conically-folded on the macroscale, it is 
usual practice to combine orientation data on a stereo- 
gram obtained from all of the folded surfaces around a 
single fold, because the poles from each folded surface 
describe the same pattern on the stereogram. This is not 
the case for members of a set of nested helicoid surfaces, 
because each member of the set has a different represen- 
tation of poles on a stereogram. This is because each 
member is formed by a generator increasingly distant 
from the heliaxis. Since it is unlikely to be able to sample 
the poles from a continuously-exposed macroscopic 
helicoid surface, it is necessary to include map character- 
istics in the identification of these surfaces. A similar 
approach was taken by Hippertt (1994) to discriminate 
between conically-arranged and helical lineations, 
which cannot be distinguished by stereographic analysis 
alone. An additional problem with relying solely on the 
stereographic properties of helicoids for their recog- 
nition, is that surfaces represented by poles which scat- 
ter away from a great or small circle on a stereogram are 
generally regarded as approximately cylindrical or coni- 
cal. This may partially explain why helicoids have been 
overlooked in structural analysis. 

For macroscopic nested helicoids, two approaches to 
their recognition from surface structural maps are de- 
scribed below. These examine: (i) the shapes of curvili- 
near outcrops of a set of nested helicoid surfaces 
exposed on a horizontal erosion surface (these curves 
are referred to as helicoid traces), and (ii) the helicoid 
surface dips along the helicoid traces, represented as 
poles on a stereogram. The locus of poles on a stereo- 
gram representing data collected from a single helicoid 
trace is referred to here as a pole locus (plural - pole 
loci). The identification criteria which are described 
below were developed by mathematically modelling 
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Fig. 4. Helicoid traces formed by intersection of horizontal erosion surface with nested helicoids, originally a set of vertical 
planar parallel surfaces striking N-S, parallel to z, spaced at two-unit intervals along y, and subsequently rotated +5” per 
unit distance along H = z. Dips of the outcropping helicoids are shown. Stereographic representation of pole loci (a line of 
poles collected along the outcropping trace of a single helicoid) are also shown, and numbered according to they intercepts 
for the original planes. Note the two-fold symmetry axis alongx (vertical reference axis emerging from intersection of y and 

z axes). (a) H crops out along the surface. (b) H lies at depth x = 2. See text for further discussion of these patterns. 

helicoids formed from initially planar surfaces (see 
Appendix), and exploring pat terns produced by widely- 
varying orientation and geometrical parameters. 

PROPERTIES OF HELICOID TRACES ON 
STRUCTURAL MAPS 

Two simple situations are considered: (a) the heliaxis 
is parallel to the erosion surface (and lies on, above or 
below it), and (b) the heliaxis plunges, therefore emerg- 
ing at some point on the map surface. In either case the 
original planar surfaces may be parallel or oblique to the 
heliaxis. In all of the following figures and discussion, 
the Cartesian reference axes used to describe the heli- 
coid traces and surfaces are z (N-S and horizontal, with 
+z pointing N), y (E-W and horizontal) and x (vertical). 
The horizontal erosion surface therefore corresponds to 
a plane with constant x values. For the situation where 
the heliaxis is horizontal, the z-axis is set along it. 

Considering first a buried horizontal heliaxis, Fig. 4 
shows two examples of patterns of helicoid traces and 

associated stereograms for poles collected along these 
traces. For both examples in Fig. 4, the original orien- 
tation of planes was N-S vertical, i.e. parallel to the 
heliaxis (i.e. the z-axis). The planes have been subject to 
+5” (i.e. right-handed) rotation per unit distance along 
z. Figure 4(a) has z lying on the erosion surface (i.e. the 
erosion surface is the plane x = 0)) while in Fig. 4(b) z is 
buried at depth (x = 2). In Fig. 4, helicoid traces and 
pole loci show a vertical 2-fold symmetry axis, corre- 
sponding to the x-axis. This is true for any section 
parallel to z, when z lies parallel to the original planar 
surfaces, because such helicoids belong to the Da point 
group (Paterson & Weiss 1961), with 00 2-fold axes 
winding normal to z. Helicoid traces diverge away from 
the y axis and have opposite senses of curvature on 
either side of the origin. Each curve shows dip direction 
reversals along trend, with the locations of vertical dips 
lying along the y-axis. The curve through the origin is 
straight in Fig. 4(a), but sigmoidal in (b). In Fig. 4(b) the 
sigmoidal curve above the origin is s-shaped (for right- 
handed rotation) if the z axis is below the surface, and z- 



Z=H 

H 
Z=H 

, /? i /=/ , / i  k ,,/= b 

H 
t,, 

2 
. - 6  

12 

510 T . J .  FOWLER 

Fig. 5. Helicoid traces and stereogram pole loci as for Fig. 4(b) (i,e, heliaxis at depth x = 2), except that the original 
orientation of planes betbre rotation was oblique to H, being N27W 77NE in (a), and N27E 77NW in (b). The pole to the 
original planes is represented by the point P on the stereogram in both (a) and (b). The broken line cutting across the 

helicoid traces represents the locus of points of dip reversal. See text for discussion of these patterns, 

shaped if it is above. The opposite relations are true for 
left-handed rotation. There is thus ambiguity regarding 
locating a horizontal heliaxis from its helicoid trace 
patterns. For both Figs. 4(a)&(b) (and for all cases 
where the heliaxis is horizontal), the pole loci diverge 
from a single common horizontal pole which is normal to 
z at x = 0, but approaches z at higher values of x. Pole 
loci curve strongly to approach z at large z values. The 
points on the helicoid traces corresponding to the com- 
mon pole all lie along the y-axis, that is are coincident 
with the locus of points of dip-direction reversal. 

Helicoid traces and pole loci are shown in Fig. 5 for a 
buried horizontal heliaxis, with initially oblique planar 
surfaces. For both Figs. 5(a)&(b), rotation is +5 °, and z 
lies at depth x = 2, but in (a) the original surfaces had 
orientation N27W 77NE, while in (b) they were N27E 
77NW. Here both helicoid traces and pole loci lack 
symmetry because they belong to the Coo point group 
(Paterson & Weiss 1961), which lacks 2-fold axes of 
symmetry. Sigmoidal helicoid traces are common, and 
reversals of dip along trend are again the rule, but the 
points of dip reversal do not generally coincide with 

curvature maxima or curve inflections. Nevertheless, 
these dip reversal locations lie on a line parallel with the 
y-axis (i.e. normal to the heliaxis). Helicoid traces again 
diverge away from the y-axis. All pole loci for these two 
families diverge from a common horizontal pole to 
approach the z axis. Again the points on the helicoid 
traces corresponding to the common pole are coincident 
with the locus of points of dip-direction reversal. As 
noted above, there is ambiguity regarding whether the 
heliaxis lies above or below the surface, unless the sense 
of rotation (right- or left-handed) is known. 

The most general condition for regular helicoids is for 
a plunging heliaxis and initially oblique initially planar 
surfaces. Two examples are shown in Fig. 6. In both 
Figs. 6(a)&(b), the original surfaces were N27W 77NE, 
and deformation involved +5 ° rotation per unit length 
along the heliaxis. The heliaxis plunges 10 and 30 ° north, 
respectively for Figs. 6(a) & (b), and emerges at the 
origin of the reference axes. For this situation, the 
heliaxis no longer lies along the z-axis. The z-axis is 
horizontal and lies N-S along the erosion surface, which 
is represented by the plane x = 0. A gently plunging 
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Fig. 6. Helicoid traces and pole loci for two situations where the heliaxis plunges towards the N from the origin. z is 
horizontal and lies on the erosion surface which is represented by the plane x = 0. The orientation of planes before rotation 
was N27”W 77NE (with pole to these planes represented by P on the stcreograms). Plunge of H is 10”N in (a) and 30”N in 
(b). His also represented on the stereograms. The wavy broken line cutting across the helicoid traces represents the locus of 
points of dip reversal, whife the dashed hnc normal to z represents the locus of points corresponding to the common pole on 

the stereogram. See text for discussion of thcsc patterns. 

heliaxis yields sigmoidal helicoid traces (Fig. 6a). As the 
plunge of the heliaxis increases the helicoid traces adopt 
the same curvature sense (F:ig. 6b), though still show 
reversals of dip direction along trend. Notice that in Fig. 
6(b) the locus of points of dip reversal does not approxi- 
mately parallel the y-axis. Pole loci again intersect in a 
common pole which is now not horizontal. With increas- 
ing plunge of the heliaxis the common pole becomes 
steeper, and the pole loci condense and become a single 
great circle when the heliaxis is vertical. The points on 
the helicoid traces corresponding to the common pole 
still lie on a straight-line locus which is perpendicular to 
the trend of the heliaxis, though here is distinct from the 
locus of points of dip-direction reversal. 

~~~n~a~y of the properties of helicoid traces-criteria 
for recognition of helicoids 

Helicoid traces are characterised by changes in dip 
sense along trend, with the points of dip reversal lying on 
a line lving tvnicallv at a large angle to the overall trend 

of the helicoid traces. In general, the locations of dip 
reversals are independent of curvature maxima or inflec- 
tions of the helicoid traces. A propellor-blade geometry 
for the individual surfaces is usually evident, though the 
helicoid traces need not be sigmoidal. Because of the 
axial symmetry of helicoids, these patterns would be 
conserved if the entire set of helicoids were tilted (with- 
out changing the plunge of the heliaxis). The effect of 
tilting would be to translate the patterns parallel to the z- 
axis. 

Although obliquely-folded surfaces may also show dip 
reversals and sigmoidal traces in section, these surfaces 
may be distinguished from helicoids by their pole loci on 
a stereogram. as explained previously. Distinguishing a 
single obliquely-folded surface from a single helicoid 
will, however, require more data than mere poles to 
curvilinear lines of intersection. 

Pole loci plotted for sets of helicoid traces intersect in 
a common pole which is horizontal if the heliaxis is 
horizontal, and plunges if the heliaxis plunges. These 
nole loci diverge awav from the common oole. The Dole 



T, J. FOWLER 

KILOMETRES 

Fig. 7. Map of the cleavage trend surfaces and cleavage dips in the Rockley district, Hill End Trough, southeastern 
Australia. The sigmoidal propeller-blade shaped axial plane of the Rockley Syncline is shown. The broken lines cutting 
across the cleavage trends represents the locus of points of local cleavage dip reversal. VCF = Vale Creek Fault. MEF = Mt 

Evernden Fault. See text for discussion and interpretation of the patterns. 

loci will show a 2-fold symmetry only if the original 
surfaces contained the h&axis. The set of points on the 
helicoid traces corresponding to the common pole lie on 
a line perpendicular to the trend of the heliaxis. Since 
the common pole represents identically-oriented tan- 
gents to the nested helicoid surfaces, the mapped line of 
points corresponding to it is also an isotrend line as 
described by Lisle (1992). 

The above criteria should be sufficient to identify 
approximately regular macroscopic helicoid surfaces 
and to gain an idea of the orientation of the heliaxis. 
However, trial-and-error modelling is likely to be 
necessary to locate the heliaxis geographically and to 
determine amount of rotation per unit distance along it. 

HELICOIDAL CLEAVAGE TREND SURFACES 
FROM THE LACHLAN FOLD BELT, SE 

AUSTRALIA 

A mapped portion of the deformed Palaeozoic Hill 
End Trough in the Lachlan Fold Belt, southeastern 
Australia, is presented in Fig. 7. The thick marine 
sequence of sediments and volcanics of the Hill End 
Trough were deformed by roughly E-W compression in 

the mid-Carboniferous Kanimblan Orogeny (Powell 
1984). This defo~ation generated macroscopic folds 
and an associated penetrative steeply-dipping slaty 
cleavage. In the northern part of the trough, north of the 
Bathurst Granite, the cleavages describe a convergent 
cleavage fan with almost rectilinear cleavage trend lines 
extending roughly north-south. Also in this part of the 
trough, the line dividing easterly-dipping cleavages from 
westerly-dipping cleavages is not oblique to the cleavage 
trends (Collins 1971). South of the Bathurst Granite 
(Fig. 7), the cleavages also define a macroscopic fan, 
though cleavage trends are moderately to strongly 
curved, are sometimes sigmoidal, and have dip reversals 
along trend giving the cleavage trend surfaces a 
propellor-blade geometry. The locus of points of dip 
reversal lies at a large angle to the cleavage trends. The 
main macroscopic fold structure, the Rockley Syncline, 
has an axial plane which is gently sigmoidal and has a 
propellor-blade geometry (Stanton 1956, Fowler 1989). 

The eastern part of the cleavage fan shown in Fig. 7 
has been intruded by the late syntectonic Davys Creek 
Granite (Fowler 1994). There are two reverse faults (the 
Vale Creek Fault and the Mt Evernden Fault) which 
extend at least as far south as the southern edge of the 
Davys Creek Granite. The Vale Creek Fault is a curved 
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Fig. 8. (a) Pole loci for the cleavage trend surfaces in the Rockley district cleavage fan between the Vale Creek and Mt 
Evernden Faults, shown in Fig. 7. (b) Best-fit helicoid pole loci corresponding to (a). T, and TN are estimated heliaxes for 

the southern and northern halves of this helicoidal domain, respectively. 

scissor fault with increased displacement at its northern 
end (Fowler 1987). 

The poles measured along cleavage trends plot as two 
sets of diverging pole loci on a stereogram, each with a 
common pole (Fig. 8). On the basis of the above proper- 
ties it is proposed that the cleavage trend surfaces in the 
southern part of the Hill End Trough have helicoidal 
geometry. The following presents results of trial-and- 
error mathematical modelling of the helicoidal surfaces 
to locate the heliaxis and estimate the amount and sense 
of rotation involved. 

Torsional origin of the helicoidal cleavage trend 
surfaces in the southern Hill End Trough 

The stereographic plot of poles measured along the 
outcropping cleavage trend surfaces for the southern 
part of the Hill End Trough is presented in Fig. 8(a). The 
best fit for both mapped helicoid traces and pole loci is 
shown for comparison in Figs. 8(b) and 9. It is clear that 
there has been some complexity in the history of defor- 
mation of these cleavages. The model of best fit requires 
that the heliaxis changes plunge from 5” (towards 
NlOW) south of the southern edge of the Davys Creek 
Granite to 46” (towards N15W), in the region west of the 
Davys Creek Granite bound by the Vale Creek and Mt 
Evernden Faults. The orientation of the original planar 
surfaces in the southern part was estimated to be N30W 
vertical, while in the northern part they were approxi- 
mately N40W 78SW. The two sets of pole loci corre- 
spond with these two apparently different helicoidal 
sections of the cleavage trend surfaces. As far as can be 
determined by trial-and-error of a large range of values, 
there are no significantly different solutions which 
satisfy the data. 

The interpreted history and origin of the helicoids is 
suspected to be torsional, with the heliaxis coinciding 
with the torsion axis, as illustrated in Fig. 10, and 
explained below. The first deformation stage involved a 
modest rotation of t-5” per kilometer along the gently- 

72 

Fig. 9. Calculated helicoid traces corresponding to the best-fit pole 
loci in Fig. S(b). The wavy broken line represents the locus of points of 

surface dip reversal. 

plunging heliaxis, perhaps to accommodate the dilation 
produced by early stages of intrusion of the adjacent 
Davys Creek Granite. The northern modestly-rotated 
cleavage trends then suffered more intense torsion along 
a steeper heliaxis, perhaps coinciding with the develop- 
ment of the Vale Creek and Mt Evernden Faults, which 
are estimated to have accommodated a torsional ro- 
tation of between +8 and +9.5”per kilometer. This later 
episode of more intense torsion may have been required 
by the rapid inflation of the Davys Creek Granite in its 
final intrusive phase (Fowler 1994). 

Some distortion of cleavage trend curvature is likely 
to have occurred due to flattening around the late syn- 
tectonic Davys Creek Granite. However, the modest 
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Fig. 10. Interpreted history of distortion of regional cleavages around the late syn-tectonic Davys Creek Granite (DCG). 
As with other figures, the locus of points of dip direction reversal is shown. Note that north points towards the observer. (a) 
Original steep to vertical cleavages across the region. Onset of intrusion of the Davys Creek Granite. (b) Modest torsion of 
cleavages about gently plunging T, torsion axis. (c) Development of the Vale Creek Fault (VCF) and torsion about the 

northerly plunging TN torsion axis. MEF = Mt Evernden Fault. 

curvature of cleavage trends along the eastern side of the 
granite suggests that this effect may not be great. 
Stevens (1975) has questioned whether the strong curva- 
ture of cleavage trends in the northernmost part of the 
mapped area in Fig. 7 was due to emplacement of the 
Bathurst Granite. This is doubtful because (i) there are 
insignificant strain effects in the aureole of the Bathurst 
Granite associated with its intrusion (Paterson et al. 
1991); (ii) the Mt Evernden Fault transects the curved 
cleavages and predates the Bathurst Granite (Fowler 
1989); (iii) the cleavage trends elsewhere along the 
southern contact of the granite and those north of the 
Bathurst Granite are not deflected as they approach the 
contact; and (iv) satellite plutons of the Bathurst Gra- 
nite show no deflection of cleavages at their margins 
(Packham 1968, Bateman 1982). The accommodation of 
torsion between two curviplanar faults is an example of 
the types of boundaries that may separate torsional from 
non-torsional domains. This is further discussed in the 
next section. 

POSSIBLE ORIGINS OF HELICOIDS 

Helicoids and helical lineations obviously may be 
generated by torsional forces. The possibilities of tor- 
sional deformation in structural geology have largely 
been ignored, possibly due to (i) the rejection of 

initially popular ideas of the role of torsion in jointing 
(Hills 1972, p. 105); (ii) the notion that planar surfaces 
suppress torsion because of the potentially large dis- 
placements at increasing distance from the torsion 
axis, and relating to this, (iii) problems attending the 
nature of boundaries separating torsional and non- 
torsional domains. Nevertheless, Billings (1972, p. 
159) thought it probable that ‘torsion is an important 
type of deformation’, and Nevin (1949, p. 21) felt that 
‘torsional stresses are present far more frequently than 
is commonly suspected’, and (Nevin, 1949, p. 136) 
‘during the warping of an area into a broad uplift, 
torsional stresses are bound to occur’. However, the 
principles formalised by Paterson & Weiss (1961) 
regarding the geometry of deformed objects, require 
only that the symmetry elements which are common to 
all factors of deformation (i.e. are present in both the 
undeformed object and in the deforming forces) are 
also present in the deformed object. There may be any 
number of additional symmetry elements in the de- 
formed object which are not present in the deforming 
forces. Stated simply, torsional forces may produce 
helicoids, but are not a necessity. 

Regional compression, horizontal shear and torsion 
about a vertical axis have been invoked by Tokuda 
(1926) and Lee (1929) to explain curviplanar en echelon 
fold belt structural trends in Eastern Asia. However, 
Hills (1972, p. 334) questioned whether basement 
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Fig. 11. (a) Torsion of a cylindrical volume bound by shears. (b) 
Torsion on a cylindrical scissor-fault. (c) The limbs of a chevron with 
decreasing interlimb angle follow the shape of a helicoid. (d) A 
helicoid surface could be traced only by passive progressive rotation of 
lines (e.g. bedding intersections on cleavage planes) in a rotational 

strain field. (e) Similar to (d) but in an irrotational strain field. 

shearing beneath the cover may be responsible for these 
peculiar fold trends. de Sitter (1964, p. 159) referred to 
torsional motion (presumably in cover rocks) due to 
unequal vertical movements of the basement possibly 
being involved in the development of normal faults in 
cover rocks. Allerton (1994) described differential ro- 
tation of the upper limb of a recumbent fold clockwise 
with respect to the lower limb by several tens of degrees 
about a vertical axis, in response to differential shorten- 
ing radially outwards from this axis. 

The helical rise of magma in diapirs intruding active 
shear zones described by Hippertt (1994) is torsional in 
its dynamics. This provides an example of a boundary 
separating domains which have experienced torsion 
from those which have not. A sketch of such a boundary 
is shown in Fig. 11(a), where angular displacement 
decreases to zero at the intrusive contact where fric- 
tional resistance to flow reaches a maximum. The 
boundary surfaces may be ductile shear zones, in which 
case the angular displacement need not fall to zero at the 
domain boundary. The spiral cross-sections of rotational 
porphyroblasts (Fig. 2a) also show radial gradients in 
angular displacement. 

A variation on the shear boundary model between 
torsional and non-torsional domains is shown in Fig. 
11(b), where the boundary is curviplanar (the termin- 

ation of a cylindrical, conical or listric fault). Similar 
boundaries are suggested to enclose the helicoidal 
domain of the southern Hill End Trough, described 
above. Listric thrust slices bound by converging thrust 
splays (i.e. horses) could experience a rotation gradient 
normal to the shear direction, leading to helicoidal 
geometry. Examples of regional cleavage fans being 
dissected by listric thrusts are shown by Weber (1981) 
and Weijermars (1986). 

The simplest (and most likely) geological objects to 
show torsional strain will be linear or cylinder-shaped. 
In engineering, the problems of torsion of cylindrical 
shells (e.g. pipes) are routinely considered (Calladine 
1983), and the hinges of tight folds may be approxi- 
mations to cylindrical shells, at least near the hinges. 
Linear fabrics and anisotropies such as those described 
by Watkinson (1983) may also experience torsional 
strains. 

Another example of torsion is shown in Fig. 11(c) 
where the torsion axis is a chevron fold hinge. A pro- 
gressive change in interlimb angle along the hinge will 
generate a helicoid geometry in the fold limbs. 

Whereas torsion involves the body rotation of radial 
segments of the deformed surface, the passive rotation 
of these segments in a rotational or irrotational strain 
field may also generate helicoids. Such helicoids are 
produced independently of torsion, as noted above. 
Two examples are shown in Figs. 11(d) & (e). A shear 
strain gradient (Fig. lld, e.g. disposed laterally 

outwards from the centre of a ductile shear zone) would 
be expected to generate helicoid geometry in pre- 
existing inclined surfaces. An additional complexity is 
introduced by the likely curvature of the heliaxis (pro- 
ducing a non-regular helicoid) due to the gradient of X 
strain values accompanying the shear strain gradient, 
which at higher values is also responsible for develop- 
ment of sheath folds. In this example, the boundaries 
enclosing the torsional domain are those of the ductile 
shear zone itself. 

A helicoid produced in an irrotational strain field is 
shown in Fig. 11(e). Again, curvature of the heliaxis is 
likely. Such a strain gradient might be expected as a zone 
of constriction is approached, e.g. near the triple points 
around syntectonic expanding plutons (Brun & Pons 
1981, Guglielmo 1993), or near the stem of a rising diapir 
(Dixon 1975). 
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APPENDIX 

Derivation of equations for the general helicoid 

First, consider a three-axis coordinate system with z as the heliaxis. 
Before rotation, a set of initially parallel planar surfaces may be 
represented by the equation: 

h.r + ky + lz - d = 0. (1) 

where all of the planes have the same vector normal (h, k, I), and the 
planes differ in their d values. 

To generate the helicoid surface, every point (x,y,z) on each plane 
experiences a rotational transformation to (x’,y’, 2’). The amount of 
rotation is a function of the z-component, most-simply linearly related 
to z via the constant 0. The transformation of coordinates is treated as 
a matrix operation: 

cos (Or) sin(&) 0 x 

-sin(&) cos(0z) 0 y 

0 0 Ii1 1 z 

which gives: 

x’ = x cos(&) + y sin(f?z) 

y’ = y cos(&) - x sin(0z) 

z’ = z. (2) 

Substituting the transformed coordinates of equations (2) into (1) 
gives us the general equation for the helicoid: 

f(x,y,z) = x[h c0ge2) - k sin(&)] 

+ y[h sin(ez) + k cos(ez)] + lz - d = 0. (3) 

The vector coordinates for the pole to the surface at any (x. y, z) may 
be obtained with the gradient operator: 

This gives the coordinates of the pole to the helicoid at (x, y, z): 

Vf = (h cos(ez) - k sin(&), hsin(0z) 

+ k c0s(ez), I + e(yh - ku) cos(ez) 

- e(yk + ILX) sin(ez)). (5) 

Calculation of helicoid traces (curvilinear lines of intersection of a 
helicoid with a horizontal erosion surface) 

For Figs. 4 & 5, where the heliaxis is buried but parallel to the erosion 
surface, the z- and y-axes are set horizontal, and x vertical. The 
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horizontal erosion surface then corresponds to the plane x = constant. 
This value for x is substituted into equation (3) to generate the 
equations for the level curves on the erosion surface. The pole 
coordinates for points along the level curves are also simply calculated 
again by substituting the desired value of x into equation (5). These 
pole coordinates are simply translated into trend and plunge of the 
pole, and from this into dips and strikes of the outcropping level curves 
at any point. 

When the heliaxis is plunging, a new coordinate system is devised 
parallel and perpendicular to the ground surface (x,,,, y,,, and z,_., 
axes). The anew- axis is set along the trend of the plunging heliaxis with 
the origin of the new axes coinciding with the origin of the original 
axes, and therefore lying at the point of emergence of the heliaxis. 
Thus we need only deal with level curves for x,,, = 0. freferred to the 
original axes may be related to the new axes by a matrix, which after 
multiplication gives: 

x = x,!?~ cos(0) + z,Zew sin(u) 

Y = Y,8Cn; 

z = anew cos(a) - x,,, sin(u) (6) 

where u is the plunge of the heliaxis from the horizontal. Substituting 
(6) in (3). setting x,,,,” = 0 and using the new axes as our X, y, z 
coordinate system, gives the equation for a helicoid with axis oblique 
to z: 

g(x,y.z) = zsin(u{h COS(I/J) - k sin(v)}) 

+ y{h sin(@) + k cos(r#)} + lz cos(u) - d = 0 (7) 

where t/~ = 0z cos(u). 
Again using the gradient operator, the coordinates for the poles to 

this helicoid at point (0, y, z) are: 

(8) 
where 

Vg = (P{cos(u) - y0 sin(u)} + Q& sin*(u) 

- I sin(u), Q, P{sin(u) + y0 cos(u)} 

- Q0z sin(u) cos(u) + I cos(u)) 

P = h cos(@) - k sin(v) 

Q = h sin(q) + k cos(yt). 

The common pole on stereograms 

When P = 0, i.e. when z = {tan-‘(h/k)}/@ cos(u), the Vg vector 
coordinates depend only on z. Therefore, along the line z = 
{tan-‘(h/k)}/0 cos(u), all the outcropping helicoid surfaces have the 
same pole (the common pole). The vector coordinates for this com- 
mon pole are: 

Ag cOmmOn = (sin(u) tan(u){tan-‘(h/k)}~(h2 + k’) 

- Isin( d(h2 + k’), Ices(u) 

- sin(u){tan~‘(h/k)}~(h’ + k’)). (9) 

Similar arguments lead to the vector coordinates for the common pole 
in the case of non-plunging heliaxis, though in this case we must take 
account ofx since the erosion surface is not necessarily the plane x = 0. 
The common pole vector coordinates become: 

Vf common = (0, q(h2 + krj> I - ~.d/(h2 + k’)). 00) 
The zero first vector coordinate indicates that the common pole always 
represents a vertical plane. 


